

Chapter 1: Formation of carbon-carbon single bonds
1.1 Alkylation: importance of enolate anions
a. The acidity of the C-H bonds
b. Formation of Enolate ions
c. pK _a of the conjugate acid of some bases
d. Alkylating agent 4
e. Medium Effects in the Alkylation of Enolates
f. O- vs C- alkylation
g. Dialkylation 7
h. Regio- and Stereoselectivity in the Enolate Generation
1.2 The Enamine and Related Reactions
1.3 Aldol reaction 14
a. Mixed Aldol Condensation
b. Directed Aldol Condensation
c. Control of Stereochemistry
d. Allylmetal compound with aldehydes
e. Evans' chiral <i>N</i> -acyl oxazolidinones
Chapter 2: Formation of Carbon-carbon Double Bonds
2.1 β-Elimination reaction
2.2 Pyrolytic syn eliminations
2.3 The Wittig and related reactions
a. The mechanism of Wittig reaction
b. Wittig reaction with stabilized ylides
c. Schlosser Modification
d. Horner-Wadsworth - Emmons Modification
e. Horner - Wittig Reaction
2.4 Peterson Olefination
2.5 Sulfur Ylides 29
2.6 Alkenes from sulfones
a. Ramberg-Backlund reaction
b. Julia olefination
c Julia-Kocienski olefination
2.7 Decarboxylation of β -lactones
2.8 Stereoselective synthesis of tri- and tetra-substituted alkenes 35
2-9 Fragmentation reactions
2-10 Olefin Metathesis
Reference Books: 1. William Carruthers and Iain Coldham, "Modern Methods of Organic Synthe
4 th Ed; 2004, Cambridge, ISBN 0-521-77830-1

2. Francis A. Carey and Richard J. Sundberg, "Advanced Organic Chemistry" 4th Ed, Part B; 2000, Kluwer Academics / Plenum Publisher; New York, **ISBN 0-306-46243-5**

Chapter 1. Formation of carbon-carbon single bonds

Anion Stabilizing Effect

 $NO_2 > COR > SO_2R > CO_2R > CN > SOR > Ph, SR >> H > R$ Substituent Effect on pKa

Alkyl (+1~2), Halogen (-1~2), Vinyl (-5~7), Phenyl (-5~7), Sulfide (-3~5)

tautomerization

c nK of the conjugate acid of some bases

c. pr_a of the conjugate actu of so	me bases					
conjugate acid / base	pK _a	conju	gate acid	/ base	pKa	
H_2O / OH^-	15.7	N	H ₃ / NH ₂	_	30	
MeOH / MeO ⁻	16		—H /	N=+;+	22	
<i>t</i> -BuOH / <i>t</i> -BuO	19					
-Si -Si N-H / N - Si - Si -	25	Lithiu Ph	m Diisopro (LDA) I ₃ CH / P	pylamide h ₃ C [—]	33	
Hexamethyldisilazide (HMDS)	 	RI	h / R ⁻		~50	
c.f. $Et_3 \overset{+}{N}H / Et_3N$	11	Ph-N	NH ₃ / Ph-	NH ₂	4.6	
Et ₂ NH ₂ / Et ₂ NH	10.5	Py-	H / Pyrid	ine	5.3	
d. alkylating agents		-	•	E	lecreoega	tivity Sca
O O ∥ ∥ EtONa		O ↓	o ↓		4.0	F
Eto OEt EtOH	Br	EtO	<pre> OEt </pre>		3.5	0
	I	\sim	84%		3.0	CI, N
Mechanism of alkylation					2.8	Br
Stereoelectronic effect (favors tra	ajectory of m	aximum o	rbitals ove	erlap)	2.5	C, S, I
backside attack for S_N^2 reaction					2.1	H, P
Nu: R ™ ₹	<u>→</u> (Ní	u: R			2.0	В
alkylating agents the direction of the arrow is decide	ed by the rela	tive stabil	itv of Nu	and X^{-}	1.8	Si
X: good leaving group - stabilize	ed anion (res	onance o	r charge d	elocalized))	
X = I. Br. Cl. OTs. OMs etc.			leaving group	relative rate	conjugate acid	pKa
, _, _, _, , , , , , , , , , , , , , ,			F	10 ⁻⁵	HF	3.1
0 0 + 0 OSO_2Me <u>C</u>	sF CH(C	$O_2Et)_2$	CI [–]	10 ⁰	HCI	-3.9
CO_2Et			Br [_]	10 ¹	HBr	-5.8
Steric effect (Tavors small size rea	ctants for alk	ylation)	I _	10 ²	н	-10.4
<pre>primary > secondary > ter</pre>	tiary		H ₂ O	10 ¹	H ₃ O⁺	-1.7
	_H R:		MsO ⁻	10 ⁴	MsOH	-2.6

and X		1.8	Si		
lelocalized)					
	relative rate	conjugate acid	pKa		
	10 ⁻⁵	HF	3.1		
	10 ⁰	HCI	-3.9		
	10 ¹	HBr	-5.8		
	10 ²	H	-10.4		

TsOH

TfOH

-2.8

-6.0

10⁵

10⁸

TsO⁻

TfO[−]

Scale

e. Medium Effects in the Alkylation of Enolates

solvent	classification	dielectric const	solvent	classification	dielectric const
H ₂ O	protic	78	DMF	aprotic	37
DMSO	aprotic	49	MeOH	protic	33
MeCN	aprotic	37	AcOH	protic	6

f. O- vs C- alkylation

major contribution

(a negative charge is located on the more electronegative oxygen atom)

Control of O- vs C- alkylation

Free enolates give O-alkylation

1. Counter ion effects

Mg⁺⁺ Li⁺ Na⁺ K⁺ <u>n-</u>Bu₄N⁺

C-alkyation

O- alkylation

2. Solvent effect

polar protic or less polar aprotic	polar aprotic
◄	→
C- alkylation	O- alkyation

C- alkylation 3. Leaving group effect

HSAB theory (hard-soft-acid-base)

Hammond Postulate (J. Am. Chem. Soc. 1955, 77, 334)

- Hard-Hard combination: Early Transition State Controling factor: Enolate stability
- Soft-Soft combination: Late Transition State Controling factor: Product stability

4. Stereoelectronic effect

g. dialkylation

Mechanism

h. Regio- and Stereoselectivity in the Enolate Generation

Stereoselectivity

1) Control of Regioselectivity

Kinetic Control

- 1. Product composition is determined by the relative rates of H^+ abstraction
- 2. Least hindered H⁺ is removed
- 3. Hindered but strong base: LDA, Ph₃CLi
- 4. No proton sources: H_2O or O_2
- 5. Low temperature
- 6. Cation: covalently bonded to oxygen Li > Na > K

When Ph_3CK was used as a base in the above example the product ratio (28 : 72) changed to 55: 45.

Thermodynamic Control

- 1. Product distribution is based on their thermodynamic stability (equilibrium condition).
- 2. Most substituted (most stable) enolate preffered.

- 3. Small and weak bases: NaOH, NaOMe, NaH etc.
- 4. H⁺ sources: excess ketone, protic solvent
- 5. High temperature
- 6. Ionic counter ion: K, Na

For Conjugate System

For 1,3-dicarbonyl compouns

2) Regiospecific Alkylation of Carbonyl Compounds

1. Protection of active methylene site

See Claisen Ester Condensation

2) Regiospecific Alkylation (continued)

3. Conjugate Addition of Enones

1.2 The Enamine and Related Reactions: Nitrogen Analogues of Enol and Enolate ion

The major problems in enolate alkylation - (i) Aldol reaction; (ii) polyalkylation - can be overcome by the enamine alkylation.

Enamine

Metalloenamines (imine anions)

from Chiral Amine

from Hydrazine

more stable and better stereoselectivity

- 1.3 Aldol reaction: acid or base-catalyzed self condensation of an aldehyde or a ketone
 - a. Mixed Aldol Condensation

b. Directed Aldol Condensation

mixed aldol condensation of aliphatic aldehydes and ketones

- c. Control of Stereochemistry: Kinetic condition
 - i) Simple Diastereoselectivity

Six-membered ring transition state: Zimmerman / Traxler Transition State

- c. Control of Stereochemistry: Kinetic condition (continued)
 - i) Simple Diastereoselectivity

(Z) → syn, (E) → anti

Best correlation

- 1. R_1 , R = large group
- 2. M = Li, B → tight transition state
- 3. (Z) is more selective than (E)

Under Equilibrium Condition (Thermodynamic Condition)

Boron enolates

Aldol reaction with Silyl Enol Ether: Open Transition State

Aldol reaction with Silyl Enol Ether (continued)

Stereochemistry

ii) Stereoselectivity between achiral enolates and chiral aldehydes

Felkin -Ahn

iii) Stereoselectivity between chiral aldehydes and prochiral enolates

iv) Stereoselectivity between chiral enolates and achiral aldehydes (continued)

d. Allylmetal compound with aldehydes

- e. Evans' chiral *N*-acyl oxazolidinones
- 1) Boron enolate

e. Evans' chiral N-acyl oxazolidinones

3) Chelated and non-chelated Ti enolates

Crimmins, J. Am. Chem. Soc. 1997, 119, 7883

Chapter 2. Formation of Carbon-Carbon Double Bonds

2.1 β -Elimination reaction

$$- \begin{array}{c} | & | \\ - C - C \\ H \\ X \end{array} \longrightarrow C = C + HX$$

X = OH, OCOR, halogen, OSO₂Ar, NR_3 , SR_2

E1 or E2 mechanism

Regioselectivity

Saytzeff rule: more highly substituted (stable) alkene

E1 elimination, base induced elimination of alkyl halides and aryl sulfonates

Hofmann rule: less substituted alkene

base induced elimination of quaternary ammonium salts or sulfonium salts

Stereoselectivity

E2 elimination = anti elimination process

2.2 Pyrolytic syn eliminations "concerted cyclic transition state"

a. carboxylic esters

[examples]

b. xanthate esters - Chugaev reaction

[examples]

c. ammonium oxides - Cope reaction

[examples]

- 2.2 Pyrolytic syn eliminations (continued)
- d. Sulfoxides (concerted cyclic pathway)

e. Selenoxides: milder conditions (at room temperature or below)

2.3 The Wittig and related reactions

a. The mechanism of Wittig reaction

Best corelation for (Z)-selectivity

- 1. "Salt-free " condition
 - K, Na as a counter metal ion
 - Li-X forms a chelated complex with the reaction intermediate
- 2. Dipolar aprotic solvents

THF, DMSO, DMF

d. Horner - Wadsworth - Emmons Modification

To increase the nucleophilicity of the stabilized ylide: **phosphonate carbanion** is used, which reacts with aldehydes as well as ketones

Z-selective HWE reaction

1. Still-Gennari modification: TL 1983, 24, 4405

[Mechanism and Origin of Stereoselectivity]

Large R or R^1 groups favor *E* alkene formation.

2. Ando method: TL 1995, 36, 4105; JOC 1997, 62, 1934.

D. L. Boger et. al. J. Am. Soc. Chem. 2001, 123, 4161.

2.4 Peterson Olefination (Si-OH)

- The addition reaction is generally not stereoselective.
- The elimination is highly stereoselective.

Elimination under basic condition: stepwise vs. concerted mechanism

Stepwise mechanism for α -stabilized α -silylcarbanion

2.5 Sulfur Ylides

[2.3]-Wittig rearrangement - Ring expansion

2.6 Alkenes from sulfones

a. Ramberg-Backlund reaction

Sulfone-mediated addition reaction

Different counter metal ions can shift unfavorable equilibrium toward the addition product Replace lithium with magnesium or use BF_3OEt_2

Trapping with Ac_2O , BzCI, MsCI or TMSCI can also shift unfavorable equilibrium toward the addition product

Addition to an ester and reduction of the resulting ketone to β -hydroxysulfone

Using DME instead of THF sometimes suppresses the undesirable enolization Sulfoxide-mediated addition would lead to improved yields due to the greater reactivity c. Julia-Kocienski olefination

- 32 -

Stereoselectivity

Entry	Base (equiv)	Additive (equiv)	Solvent	Yield	E/Z
1	KHMDS (1.1)		THF	88%	4.3:1
2	KHMDS (1.1)	18-Cr-6 (1.1)	THF	86%	15:1
3	KHMDS (1.1)	18-Cr-6 (2.0)	THF	84%	>50:1
4	KHMDS (1.1)	18-Cr-6 (2.0)	toluene	87%	>50:1
5	KHMDS (1.1)	18-Cr-6 (2.0)	DMF	78%	>50:1
6	NaHMDS (1.1)	18-Cr-6 (2.0)	THF	78%	4:1
7	LiHMDS (1.1)		THF	90%	2.1:1
8	LiHMDS (1.1)	12-Cr-4 (2.0)	THF	79%	3:1

Open Transition State (KHMDS, 18-Cr-6)

2.7 Decarboxylation of β -lactones

2.8 Stereoselective synthesis of tri- and tetra-substituted alkenes

a. Grignard reagent with an $\alpha\mbox{-chloroaldehyde}$ or -ketone

b. Reduction of propargylic alcohol with LiAlH₄

- 34 -

c. Reaction of organocopper or organoborane with alkynes

2.9 Fragmentation reactions

X = OTs, OMs

H J OTs ŌΗ

NaH

THF

25 °C

0

Bazzenene
2.10 Olefin Metathesis

2 RCH=CH₂ ← Catalyst RCH=CHR +

ruthenium or molybdenum alkylidene (carbene) complex

 $H_2C=CH_2$

- 1. Lithium in Organic Synthesis
- 1.1 Nature of Organolithium Compounds

senstive to oxygen and moisture

stable in anhydrous hydrocarbons under a nitrogen or argon atmosphere at ambient temperature

exists as hexamers, tetramers, or dimers

RLi	In hydrocarbon solv.	In ethereal solv.		
MeLi	-	Tetramer		
EtLi	Hexamer	Tetramer		
<i>n</i> -BuLi	Hexamer	Tetramer		
<i>i-</i> BuLi	Tetramer	-		
BnLi	Dimer	Monomer		
<i>i</i> -PrLi	Tetramer	Dimer		
s-BuLi	-	Dimer		
PhLi	-	Dimer		
<i>t</i> -BuLi	Tetramer	Dimer		

Half-lives of RLi			Temperature (°C)					
RLi	Solv.	-70	-40	-20	0	+20	+35	
<i>t-</i> BuLi	DME	11 m						
	THF		5.6 h	42 m				
	ether			8 h	1 h			
<i>s</i> -BuLi	DME	2 h	2 m					
	THF			1.3 h				
	ether			20 h	2.3 h			
<i>n</i> -BuLi	DME			1.8 h	<5 m			
	THF				17 h	1.8 h	10 m	
	ether					153 h	31 h	
PhLi	ether						12 d	
MeLi	ether					3 mon		

The following coordinating solvents increase the reactivity of organolithium by reducing the extent of aggregation

DME PMDTA MeO OMe Me₂N THF (-)-sparteine

Thermal Decomposition in etheral solvents

Configurational Stability - The Hoffmann test

If a' = a, then the organolithium compund is configurationally unstable If a' \neq a, then the organolithium compund is configurationally stable

1.2.2 Preparation from Another Organolithium Compounds

1.2.2.1 Deprotonation (to form more stable C-Li bond)

deprotonation of a C-H bond without sufficient acidity is facilitated by the introduction of heteroatom functionality at a neighboring position.

n-BuLi, *s*-BuLi, *t*-BuLi, LDA, LTMP easier deprotonation

Enantioselective alkyllithium reagent by use of (-)-sparteine or (s,s)-bis(oxazoline)

1.2.2 Preparation from Another Organolithium Compounds

1.2.2.2 Halogen-Lithium Exchange - equilibrium process

Synthetically useful for the preparation of aryllithium or vinyllithium

Ph-I + R-Li
$$\xrightarrow{\text{Keq}}$$
 Ph-Li + R-I
pKa = 37
 $\xrightarrow{\ Li}$ $\xrightarrow{\ Li}$

Use of 2 equiv of t-BuLi

The rate of halogen-lithium exchange

Accelerated by the presence of ethereal solvents

1.2.2.3 Transmetallation B, Si, Sn, Pb, and Hg tin-lithium exchange

1.2.2.4 Carbolithiation

Addition of an organolithium to an unactivated, non-polarized alkene - new organolithium compounds

Rate $3^{\circ} > 2^{\circ} > 1^{\circ}$ organolithium

Equilibrium process: more stable organolithium compound can be formed

Activation by TMEDA, DABCO, or (-)-sparteine is advantageous

1.3. Examples of Lithiation

1.3.1. Lithiation by Deprotonation

1.3.1.1. Formation of vinylic, allylic or benzylic organolithiums alpha to oxygen

1.3.1. Lithiation by Deprotonation

1.3.1.2. Lithiation alpha to nitrogen

1.3.1. Lithiation by Deprotonation

1.3.1.3. Super Base (BuLi + KOt-Bu)

Deprotonate Allylic, Benzylic, Vinylic, Aromatic and Cycloprpane C-H with no Additional Assistance Remove the Most Acidic Protone

CO₂H

1.3.2. Ortholithiation vs. Halogen-metal exchange

1.3.3. Cooperation, competetion, and regioselectivity in Lithiation by Deprotonation

1.3.4. Lithiation by X-Li Exchange

Ar-Cl and Ar-F are not synthetically useful for exchange reaction, and tend to undergo deprotonation, leading to benzyne

1.3.4. Examples of Lithiantion by X-Li Exchange

1.3.5. Preparation of Vinyllithium by Shapiro Reaction

1.3.6. Miscellaneous

1.3.6.1. 1,2-Brook Rearrangement

1.3.6. Miscellaneous

1.3.6.2. Acyllithium and Iminoacyllithium using CO and Isonitriles

Acyl anion equivalent

1.3.6.3. Benzotriazoles as acyl anion equivalents

1.3.6.4. Akynyllithium Compounds from Aldehydes

Vinyllithium compounds with a halogen in the α -position undergo Fritsh-Buttenburg-Wiechell-type rearrangement to give alkynes

one of the β -substituents should be aryl, alkenyl, cyclopropyl, or H

Hydride shift occurs at temp. above -70 °C and alkynyllithium compounds are obtained by the reaction with excess BuLi

Corey-Fuchs method

1.4. Synthetic Applications

1.4.1. [2.3]-Wittig Rearrangement

1.4.3. Weinreb Amide

- 1.5. Application to polyene synthesis
 - 1.5.1. Julia Olefination

1.5.2. Julia-Kocienski Olefination

1.5.3. Double Elimination Reaction for Carotenoid Synthesis

6. Organocopper Reagent

- 6.1 Preparation of organocopper reagents
 - a. Alkyl Copper

R-Li + Cu(I)
$$\longrightarrow$$
 R-Cu + Li⁺ [Cul, CuBr·S(CH₃)₂, CuCN]

b. Cuprate

 $2R-Li + Cu(I) \longrightarrow R_2CuLi + Li^+$

Dimeric structure in solution (ether, THF) - $[LiCu(CH_3)_2]_2$

β-Hydride elimination

$$\begin{array}{c} H \\ - CH^{-R} \\ R - Cu^{-} \\ Li^{+} \end{array} \xrightarrow{} R - Cu^{-} H + H_2C = CHR \\ Li^{+} \\ Li^{+} \end{array}$$

c. Higher-order Cuprate

$$3R-Li + Cu(I) \longrightarrow R_3CuLi_2 + Li^3$$

d. Mixed Cuprate

 $[RC \equiv C-Cu-R]Li, [ArS-Cu-R]Li, [(CH_3)_3C-O-Cu-R]Li, [(cyclo-Hex)_2N-Cu-R]Li, [Ph_2P-Cu-R]Li, [Ph_2P-Cu-R]Li$

 $[CH_3\text{-}S(O)\text{-}CH_2\text{-}Cu\text{-}R]Li, \ [N \equiv C\text{-}Cu\text{-}R]Li$

Efficiency of ligand transfer

vinyl, Ph > Me > Et > *i*-Pr > *t*-Bu >> PhS, R₂N, RC≡C dummy ligand

e. Higher-order Cyanocuprats (stable)

2R-Li + CuCN \longrightarrow R₂CuCNLi₂ \longleftarrow [(R₂CuCN)₂]⁴⁻ 4Li⁺ [R₂Cu]⁻[Li₂CN]⁺ dimer

f. Mixed Higher-order Cyanocuprates

$$H_{3}C-Cu-CH_{3}$$

$$L_{i}--L_{i}$$

$$H_{2}C-Cu-CH_{2}$$

6.2.1 Nucleophilic displacement on halides and sulfonates

f. α -Halocarbonyl compounds

not a free radical mechanism

a. corelation of the reactivity towards 1,4-addition with the reduction potential of the carbonyl compounds

- 6.2.3 Conjugate addition to α , β -unsaturated carbonyl compounds
 - b. α , β -Unsaturated esters, nitriles: reduced reactivity with dialkyl cuprate (R₂CuLi)

Use RCu - BF₃ (RLi + CuCN + BF₃· OEt₂) Yamamoto *J. Am. Chem. Soc.* **1978**, *100*, 3240. TMSCI: accelerate the addition of cuprate - good for α , β -unsaturated esters and amides Mechanism

c. Enantioselectivity

mixed cuprate reagents with chiral anionic ligands

d. Tandem conjugate addition / alkylation

e. Conjugate acetylenic esters - syn addition (kinetic product)

f. Mixed copper-zinc organometallics

compatible with many functional groups; mild nucleophile; useful in conjugate addition Preparation: add CuCN to R-Zn-I

- 6.2.3 Conjugate addition to α , β -unsaturated carbonyl compounds
 - f. Mixed copper-zinc organometallics

6.2.4 Ullman coupling - coupling of aryl halide

(Organocopper Intermediate)

lower the reaction temperature by the use of soluble Cu(I) salts: CuOTf homogeneous condition

New type of Ullman coupling - mixed diarylcyanocuprate

7.1. Pd(II) - Reaction with Alkenes

7.1.2. Reaction with Alcohols

7.1. Pd(II) - Reaction with Alkenes

Phenolic Oxypalladation

7.1.3. Reaction with Carboxylic Acids

7.1.4. Reactions with Amines - aminopalladation

Oxidative amination proceeds smoothly for aromatic amines, amides, and tosylamines which are less basic than aliphatic amines that have strong complexing ability.

Aminopalladation is stoichiometric reaction. When β -OH is eliminated instead of β -H, Pd(II) is the elimination product (HO-PdCI) and the reaction is catalytic without a reoxidant.

7.1.5. Reaction with Carbon Nucleophiles

Pd enolates by transmetallation of silyl enol ehters with Pd(OAc)₂

7.1.7. Reaction with Aromatic Compounds

Catalytic Arylation of Alkenes

Catalytic turnovers are generally not high.

tert-Butyl perbenzoate - an efficient reoxidant.

1 mol% Pd(OCOPh)₂, AcOH PhCO₃-*t*-Bu, 100 °C, 67% 100 mol%

7.2 Pd(II) - Reaction with Allylic Compounds - stoichiometric reagent

Formation of π -allyl complex

Efficient complex formation - Base in DMF or CuCl₂ and NaOAc in AcOH

Formation of π -allyl complex

Carbonylation, Elimination, and Oxidation

7.3. Pd(II) - Reactions with Conjugated Dienes

The reaction is stoichiometric with respect to Pd(II) salts, but can be made catalytic by the use of reoxidants.

7.3. Pd(II) - Reactions with Conjugated Dienes

Catalytic reaction - use reoxidant of Pd(0)

stoichiometric benzoquinone or

Fe-phthalocyanine complex or Co-salen complex is used to reoxidize hydroquinone to benzoquinone Faster reaction and Higher in stereoselectivity is obtained when (phenylsulfinyl)benzoquinone is used.

Aryl- or alkenylpalladium by transmetallation

7.4. Pd(II) - Reactions with Aromatic Compounds

7.4.1. Homocoupling

7.5. Pd(0) - Oxidative addition to halides or sulfonates (σ -bond)

$$\begin{bmatrix} \mathsf{RCH}=\mathsf{CHX} + \mathsf{Pd}(0) \longrightarrow \mathsf{RCH}=\mathsf{CH}-\mathsf{Pd}^{2*} \\ \mathsf{Ar}\mathsf{-X} + \mathsf{Pd}(0) \longrightarrow \mathsf{Ar}-\mathsf{Pd}^{-\mathsf{X}} \\ \mathsf{RCH}=\mathsf{CH}_2 \\ \mathsf{RCH}=\mathsf{CHAr} \\ \mathsf{RCH}=\mathsf{RCH} \\ \mathsf{RCH} \\ \mathsf{RCH}=\mathsf{RCH} \\ \mathsf{RCH}=\mathsf{RCH} \\ \mathsf{RCH}=\mathsf{RCH} \\ \mathsf{RCH}=\mathsf{RCH} \\ \mathsf{RCH}=\mathsf{RCH} \\ \mathsf{RCH}=\mathsf{RCH} \\ \mathsf{RCH} \\ \mathsf{RCH} \\ \mathsf{RCH}=\mathsf{RCH} \\ \mathsf{RCH} \\ \mathsf{RCH} \\ \mathsf{RCH} \\ \mathsf{RCH} \\ \mathsf{RCH} \\ \mathsf{RCH}$$

7.5.1. Heck reaction (reaction with alkenes)

<mechanism>

* High halide concentration promote formation of [PdL₂X], which retards coordination to double bonds. Use -OTf instead of -X to accelerate complexation with alkenes.

Regiochemistry in Heck reaction

$$Pd(0)$$
 + dppe or dppp
bidentate ligand
 α : X = -OR, -OAc, -CH₂OH, $-N$, ERG β : X = EWG

Silicon effect

$$Ph-O-S-CF_{3} + CH_{2}=CHCH_{2}Si- \frac{Pd(OAc)_{2}}{dppf} CH_{2}=C-CH_{2}Si- \frac{\beta}{67\%} \beta:\gamma = 95:5$$

7.5.2. Palladium-catalyzed cross coupling reaction

7.5.2.1. Coupling with organometallic reagents

R-M: organomagnesium, organzinc, mixed cuprate, organostannane, organoboron compounds

X: halides, sulfonates

biaryls, dienes, polyenes, enynes

Steps in cross-coupling reaction:

oxidative addition - transmetallation - reductive elimination

7.5.2. Palladium-catalyzed cross coupling reaction

7.5.2.1. Coupling with organometallic reagents

7.5.2.1.1. Grignard and organolithium reagents with Alkenyl halides

 $CH_{3}(CH_{2})_{4}CH=CH-I + HC\equiv C(CH_{2})_{2}-OH \xrightarrow{Cul (10 mol%)} CH_{3}(CH_{2})_{4}CH=CH-C\equiv C(CH_{2})_{2}-OH \xrightarrow{90\%}$

7.5.2. Palladium-catalyzed cross coupling reaction

7.5.2.2. Coupling with stannanes

Cross-coupling reactions of aryl and alkenyl stannanes with benzylic, aryl, alkenyl, allylic halides "Stille reactions"

Group that can be transferred from tin:

alkynyl > alkenyl > aryl > methyl > alkyl

7.5.2.3. Coupling with organoboranes

Cross-coupling reaction of aryl or vinyl boron compound (boronic acids, boronate esters, boranes) "Suzuki reaction" boric acid as a biproduct

Rate-determining step: oxidative addition or transmetallation

Base catalysis is required for boronic acids to generate more reactive boronate anion.

$$Ar - X + Pd^{\circ} \longrightarrow Ar - Pd^{\parallel} - X$$

$$Ar' - B(OH)_{2} + OH \longleftarrow [Ar' - B(OH)_{3}]^{-}$$

$$[Ar' - B(OH)_{3}]^{-} + Ar - Pd^{\parallel} - X \longrightarrow Ar - Pd^{\parallel} - Ar' + B(OH)_{3} + X^{-}$$

$$Ar - Pd^{\parallel} - Ar' \longrightarrow Ar - Ar' + Pd^{\circ}$$

- 71 -

- 7.5.2. Palladium-catalyzed cross coupling reaction
 - 7.5.2.3. Coupling with organoboranes
 - Eaxamples

- 7.5.2. Palladium-catalyzed cross coupling reaction
 - 7.5.2.4. Reaction with carbon monoxide (CO)
 - 7.5.2.4.1. Reaction in ROH

Intramolecular version

7.5.2.4.2. Coupling of organometallic reagents with aryl or vinyl halides

7.5.2.4.3. Tandem intramolecular Heck-carbonylation reaction

7.5.2.5. Coupling of organostannane with acyl chlorides

